10 research outputs found

    Solving DCOPs with Distributed Large Neighborhood Search

    Full text link
    The field of Distributed Constraint Optimization has gained momentum in recent years, thanks to its ability to address various applications related to multi-agent cooperation. Nevertheless, solving Distributed Constraint Optimization Problems (DCOPs) optimally is NP-hard. Therefore, in large-scale, complex applications, incomplete DCOP algorithms are necessary. Current incomplete DCOP algorithms suffer of one or more of the following limitations: they (a) find local minima without providing quality guarantees; (b) provide loose quality assessment; or (c) are unable to benefit from the structure of the problem, such as domain-dependent knowledge and hard constraints. Therefore, capitalizing on strategies from the centralized constraint solving community, we propose a Distributed Large Neighborhood Search (D-LNS) framework to solve DCOPs. The proposed framework (with its novel repair phase) provides guarantees on solution quality, refining upper and lower bounds during the iterative process, and can exploit domain-dependent structures. Our experimental results show that D-LNS outperforms other incomplete DCOP algorithms on both structured and unstructured problem instances

    Inflammation in Cancellous and Cortical Bone Healing

    No full text
    Fractures in humans most commonly occur near the joints, in the metaphyseal bone area mainly consisting of cancellous bone. Despite this, mainly cortical fractures, located in the diaphyseal bone area, have been studied in experimental models of bone healing. It is known from previous studies that the diaphyseal fracture is sensitive to anti-inflammatory treatment, while metaphyseal bone healing is more resistant. The aim of this thesis is to study the inflammatory response to bone trauma in cancellous and cortical bone. A flow cytometric method was established for the purpose of examining the cellular composition of the inflammatory process in models of bone healing In paper I the cellular composition of metaphyseal bone healing was studied with flow cytometry. The proximal tibia was traumatized and then studied at day 1, 3, 5 and 10 afterwards and compared to healthy mice. The contralateral proximal tibia was also studied at the same time points to delineate the trauma site specific inflammation. A few changes could be noted that seemed specific to the trauma site in macrophage phenotype development. However, the cellular composition was similar at the trauma site and in the contralateral proximal tibia. This notion of a general skeletal response was confirmed with analysis of the humerus at day 5. In paper II a model of cortical bone healing apt for flow cytometry was developed and compared to cancellous bone healing. A furrow was milled along the femoral cortex and the healing bone tissue analyzed. The earliest time point that enough cells were present for flow cytometry was day 3. The cortical and cancellous model of bone healing was compared at day 3 and 5 to study how they evolve in comparison to each other. It was noted that they were similar in cellular composition at day 3, but had diverged at day 5. The cancellous model increased in neutrophilic granulocytes, whereas the cortical model increased in lymphocytes. In paper III the cancellous and cortical model were compared under experimental intervention of indomethacin. It is known that indomethacin leads to weakened biomechanical properties in cortical bone healing, but not in cancellous bone healing. The effect on cellular composition with indomethacin was studied with flow cytometry and the extracellular protein profile in the healing bone tissue with mass spectrometry. Unexpectedly, inflammatory monocytes were increased in the cortical model at day 3 with indomethacin, but otherwise the models were similar in cell composition at day 3 and 5. In mass spectrometry there was a large increase in detected proteins at day 3 in the indomethacin exposed cortical model, but otherwise the models were similar. This points to an early and model specific effect of indomethacin. The observed lack of indomethacin-induced effects in cancellous bone healing is in line with the previously noted lack of indomethacin-induced effects on bone weakening. The apparently increased inflammatory activity in the cortical model with indomethacin exposure at day 3 might indicate the healing process to be disturbed and not able to progress from the early proinflammatory state to a more anabolic, anti-inflammatory state. In paper IV the effect of macrophage depletion on healing of metaphyseal bone was studied. Clodronate was given for depletion at different time points prior to surgery and the pull-out force of a screw or tissue phenotyping of macrophages was performed a varying number of days after surgery. It was noted that metaphyseal bone healing was to a large extent inhibited by macrophage depletion up to two days after surgery, but not if depletion was done more than two days after surgery. Thus, macrophages seem to be most important during the first two days after trauma in cancellous bone healing.  In summary this thesis provide insight to the natural development of bone healing. The findings emphasise that cancellous and cortical bone healing are different entities with differences in the inflammatory process leading to healing.En felaktig länk till posten förekom i den tryckta avhandlingen. Denna är ändrad i den elektroniska versionen / There was an icorrect link to this record in the printed version of the thesis. This is corrected in the electronic version</p

    Different composition of leucocytes in cortical and cancellous bone healing in a mouse model

    No full text
    Objectives Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Methods Ten-week-old male C56/B16J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop. Results Between day 3 and 5, the granulocytes increased in the cancellous model, whereas the lymphocytes (T cells, B cells, NK cells) and monocytes (CD11b+, 14/80+, CD206+, CD14+ ) increased in the cortical model. Conclusion These results suggest an acute type of inflammation in cancellous bone healing, and a more chronic inflammation in cortical healing. This might explain, in part, why cancellous healing is faster and more resistant to anti-inflammatory drugs than are diaphyseal fractures.Funding Agencies|Swedish Research Council [VR 02031-47-5]; European Community [279239]</p

    Isolated metaphyseal injury influences unrelated bones A flow cytometric study of tibia and humerus in mice

    No full text
    Background and purpose - Fracture healing involves different inflammatory cells, some of which are not part of the traditional bone field, such as B-cells and cytotoxic T-cells. We wanted to characterize bone healing by flow cytometry using 15 different inflammatory cell markers in a mouse model of metaphyseal injury, and incidentally discovered a previously unknown general skeletal reaction to trauma. Material and methods - A bent needle was inserted and twisted to traumatize the cancellous bone in the proximal tibia of C57/Bl6 female mice. This is known to induce vivid bone formation locally in the marrow compartment. Cells were harvested from the injured region, the uninjured contralateral tibia, and the humerus. The compositions of the immune cell populations were compared to those in untraumatized control animals. Results - Tibial metaphyseal injury led to substantial changes in the cell populations over time. Unexpectedly, similar changes were also seen in the contralateral tibia and in the humerus, despite the lack of local trauma. Most leukocyte subsets were affected by this generalized reaction. Interpretation - A relatively small degree of injury to the proximal tibia led to systemic changes in the immune cell populations in the marrow of unrelated bones, and probably in the entire skeleton. The few changes that were specific for the injury site appeared to relate to modulatory functions.Funding Agencies|Swedish Research Council [VR 02031-47-5]; Linkoping University; Ostergotland County Council; European Communitys Seventh Framework Programme (FP7) [279239]</p

    Marrow compartment contribution to cortical defect healing

    No full text
    <p><b>Background and purpose — Healing of shaft fractures is commonly described as regards external callus. We wanted to clarify the role of the bone marrow compartment in the healing of stable shaft fractures.</b></p> <p><b>Patients and methods — A longitudinal furrow was milled along the longitudinal axis of the femoral shaft in mice. The exposed bone marrow under the furrow was scooped out. The mice were then randomized to no further treatment, or to receiving 2 silicone plugs in the medullary canal distal and proximal to the defect. The plugs isolated the remaining marrow from contact with the defect. Results were studied with histology and flow cytometry.</b></p> <p><b>Results — Without silicone plugs, the marrow defect was filled with new bone marrow-like tissue by day 5, and new bone was seen already on day 10. The new bone was seen only at the level of the cortical injury, where it seemed to form simultaneously in the entire region of the removed cortex. The new bone seemed not to invade the marrow compartment, and there was a sharp edge between new bone and marrow. The regenerated marrow was similar to uninjured marrow, but contained considerably more cells. In the specimens with plugs, the marrow compartment was either filled with loose scar tissue, or empty, and there was only minimal bone formation, mainly located around the edges of the cortical injury.</b></p> <p><b>Interpretation — Marrow regeneration in the defect seemed to be a prerequisite for normal cortical healing. Shaft fracture treatment should perhaps pay more attention to the local bone marrow.</b></p
    corecore